M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Generalized Elementary Functions


Six important elementary functions are the reciprocal of the exponential function:

\begin{equation*} \exp(-z) = \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(n + 1)} z^{n} \end{equation*}

the exponential function:

\begin{equation*} \exp(+z) = \sum_{n = 0}^{\infty} \frac{1}{\Gamma(n + 1)} z^{n} \end{equation*}

the trigonometric cosine and sine functions:

\begin{align*} \cos(z) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(2n + 1)} z^{2n} & \sin(z) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(2n + 2)} z^{2n+1} \end{align*}

and the hyperbolic cosine and sine functions:

\begin{align*} \cosh(z) &= \sum_{n = 0}^{\infty} \frac{1}{\Gamma(2n + 1)} z^{2n} & \sinh(z) &= \sum_{n = 0}^{\infty} \frac{1}{\Gamma(2n + 2)} z^{2n+1} \end{align*}

These functions are special cases of generalized elementary functions:

\begin{align*} A_{pq}(z) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(pn + q + 1)} z^{pn + q} & B_{pq}(z) &= \sum_{n = 0}^{\infty} \frac{1}{\Gamma(pn + q + 1)} z^{pn + q} \end{align*}

Here is a list of blog posts associated with this project:

  1. Cubic Functions
  2. Quartic Functions 1
  3. Quartic Functions 2
  4. Hexa-Hyperbolic Functions
  5. Poly-Hyperbolic Sigmoids

The nomenclature is still on-going and not final.

Here is a repository with notes:

This is a work-in-progress.