M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Cubic Functions


Consider the following equation:

\begin{equation*} \mu^{3} = 1 \end{equation*}

The three solutions are

\begin{align*} \mu_{0} &= 1, & \mu_{1} &= -\frac{1}{2}(1 - \sqrt{3} i) \equiv \mu, & \mu_{2} &= -\frac{1}{2}(1 + \sqrt{3} i) \equiv \nu \end{align*}

Note that

\begin{align*} \mu + \nu &= -1, & \mu \nu &= 1 \end{align*}

and

\begin{align*} \mu^{2} &= \nu & \nu^{2} &= \mu \end{align*}

Now consider the following three functions:

\begin{align*} f_{0}(z) &= \exp{(\mu_{0}z)} = \exp{(z)}, \\ f_{1}(z) &= \exp{(\mu_{1}z)} = \exp{(\mu z)} = \exp{\left( -\frac{z}{2} \right)} \left[ \cos{\left( \frac{\sqrt{3}z}{2} \right)} + i \sin{\left( \frac{\sqrt{3}z}{2} \right)} \right], \\ f_{2}(z) &= \exp{(\mu_{2}z)} = \exp{(\nu z)} = \exp{\left( -\frac{z}{2} \right)} \left[ \cos{\left( \frac{\sqrt{3}z}{2} \right)} - i \sin{\left( \frac{\sqrt{3}z}{2} \right)} \right] \end{align*}

First, you write \(f_{0}\) as an infinite series:

\begin{equation*} f_{0}(z) = \sum_{n = 0}^{\infty} \frac{1}{\Gamma(n + 1)} z^{n} = p_{0}(z) + p_{1}(z) + p_{2}(z) \end{equation*}

Here the \(p\)-functions are given by

\begin{align*} p_{0}(z) &= \sum_{n = 0}^{\infty} \frac{1}{\Gamma(3n + 1)} z^{3n}, & p_{1}(z) &= \sum_{n = 0}^{\infty} \frac{1}{\Gamma(3n + 2)} z^{3n+1}, & p_{2}(z) &= \sum_{n = 0}^{\infty} \frac{1}{\Gamma(3n + 3)} z^{3n+2} \end{align*}

You can also write \(f_{1}\) and \(f_{2}\) as an infinite series:

\begin{align*} f_{1}(z) &= \sum_{n = 0}^{\infty} \frac{\mu^{n}}{\Gamma(n + 1)} z^{n} = p_{0}(z) + \mu p_{1}(z) + \nu p_{2}(z) \\ f_{2}(z) &= \sum_{n = 0}^{\infty} \frac{\nu^{n}}{\Gamma(n + 1)} z^{n} = p_{0}(z) + \nu p_{1}(z) + \mu p_{2}(z) \end{align*}

The \(f\)-functions are complex exponential functions. You can write the \(p\)-functions in terms of the \(f\)-functions:

\begin{align*} p_{0}(z) &= \frac{f_{0}(z) + f_{1}(z) + f_{2}(z)}{3} \\ p_{1}(z) &= \frac{2f_{0}(z) - f_{1}(z) - f_{2}(z) - i \sqrt{3} \left[ f_{1}(z) - f_{2}(z) \right]}{6} \\ p_{2}(z) &= \frac{2f_{0}(z) - f_{1}(z) - f_{2}(z) + i \sqrt{3} \left[ f_{1}(z) - f_{2}(z) \right]}{6} \end{align*}

More explicitly:

\begin{align*} p_{0}(z) &= \frac{1}{3} \exp{(z)} + \frac{2}{3} \exp{\left( -\frac{z}{2} \right)} \cos{\left( \frac{\sqrt{3}z}{2} \right)} \\ p_{1}(z) &= \frac{1}{3} \exp{(z)} - \frac{1}{3} \exp{\left( -\frac{z}{2} \right)} \cos{\left( \frac{\sqrt{3}z}{2} \right)} + \frac{1}{\sqrt{3}} \exp{\left( -\frac{z}{2} \right)} \sin{\left( \frac{\sqrt{3}z}{2} \right)} \\ p_{2}(z) &= \frac{1}{3} \exp{(z)} - \frac{1}{3} \exp{\left( -\frac{z}{2} \right)} \cos{\left( \frac{\sqrt{3}z}{2} \right)} - \frac{1}{\sqrt{3}} \exp{\left( -\frac{z}{2} \right)} \sin{\left( \frac{\sqrt{3}z}{2} \right)} \end{align*}

Note that all coefficients are real.

Similar to the exponential functions, the parity properties give rise to linearly-independent functions:

\begin{align*} p_{0}(-z) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(3n + 1)} z^{3n} \equiv q_{0}(z) \\ p_{1}(-z) &= -\sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(3n + 2)} z^{3n+1} \equiv -q_{1}(z) \\ p_{2}(-z) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(3n + 3)} z^{3n+2} \equiv q_{2}(z) \end{align*}

More explicitly:

\begin{align*} q_{0}(z) &= \frac{1}{3} \exp{(-z)} + \frac{2}{3} \exp{\left( \frac{z}{2} \right)} \cos{\left( \frac{\sqrt{3}z}{2} \right)} \\ q_{1}(z) &= -\frac{1}{3} \exp{(-z)} + \frac{1}{3} \exp{\left( \frac{z}{2} \right)} \cos{\left( \frac{\sqrt{3}z}{2} \right)} + \frac{1}{\sqrt{3}} \exp{\left( \frac{z}{2} \right)} \sin{\left( \frac{\sqrt{3}z}{2} \right)} \\ q_{2}(z) &= \frac{1}{3} \exp{(-z)} - \frac{1}{3} \exp{\left( \frac{z}{2} \right)} \cos{\left( \frac{\sqrt{3}z}{2} \right)} + \frac{1}{\sqrt{3}} \exp{\left( \frac{z}{2} \right)} \sin{\left( \frac{\sqrt{3}z}{2} \right)} \end{align*}

When written out explicitly in terms of exponential and trigonometric functions, the \(p\)-functions and the \(q\)-functions do not look so impressive. But, I am still captivated by the fact that the three \(p\)-functions satisfy a cubic identity. Note that

\begin{equation*} f_{0}(z) f_{1}(z) f_{2}(z) = 1 \end{equation*}

In terms of the \(p\)-functions, you get:

\begin{equation*} [p_{0}(z)]^{3} + [p_{1}(z)]^{3} + [p_{2}(z)]^{3} - 3 p_{0}(z) p_{1}(z) p_{2}(z) = 1 \end{equation*}

Replacing \(z\) with \(-z\) gives

\begin{equation*} [q_{0}(z)]^{3} - [q_{1}(z)]^{3} + [q_{2}(z)]^{3} + 3 q_{0}(z) q_{1}(z) q_{2}(z) = 1 \end{equation*}

Both of these cubic identities describe curves in 3-dimensional space. It turns out that these cubic identities follow from three bilinear relations involving both the \(p\)-functions and the \(q\)-functions:

\begin{align*} p_{0}(z) q_{0}(z) + p_{1}(z) q_{2}(z) - p_{2}(z)q_{1}(z) &= 1 \\ p_{0}(z) q_{1}(z) - p_{1}(z) q_{0}(z) - p_{2}(z)q_{2}(z) &= 0 \\ p_{0}(z) q_{2}(z) - p_{1}(z) q_{1}(z) + p_{2}(z)q_{0}(z) &= 0 \end{align*}

These bilinear relations can be solved to write the \(q\)-functions in terms of the \(p\)-functions:

\begin{align*} q_{0}(z) &= [p_{0}(z)]^{2} - p_{1}(z) p_{2}(z) & q_{1}(z) &= -[p_{2}(z)]^{2} + p_{0}(z) p_{1}(z) & q_{2}(z) &= [p_{1}(z)]^{2} - p_{0}(z) p_{2}(z) \end{align*}

These are Wronskians. Alternatively, you can solve the for \(p\)-functions in terms of the \(q\)-functions:

\begin{align*} p_{0}(z) &= [q_{0}(z)]^{2} + q_{1}(z) q_{2}(z) & p_{1}(z) &= [q_{2}(z)]^{2} + q_{0}(z) q_{1}(z) & p_{2}(z) &= [q_{1}(z)]^{2} - q_{0}(z) q_{2}(z) \end{align*}

Again, these are Wronskians.

What about differentiation? Using the infinite series definition gives

\begin{align*} \frac{d}{dz} p_{2}(z) &= p_{1}(z), & \frac{d}{dz} p_{1}(z) &= p_{0}(z), & \frac{d}{dz} p_{0}(z) &= p_{2}(z) \end{align*}

and also

\begin{align*} \frac{d}{dz} q_{2}(z) &= q_{1}(z), & \frac{d}{dz} q_{1}(z) &= q_{0}(z), & \frac{d}{dz} q_{0}(z) &= -q_{2}(z) \end{align*}

Here are some argument-addition identities too:

\begin{align*} p_{0}(w + z) &= p_{0}(w) p_{0}(z) + p_{1}(w) p_{2}(z) + p_{2}(w) p_{1}(z) \\ p_{1}(w + z) &= p_{0}(w) p_{1}(z) + p_{1}(w) p_{0}(z) + p_{2}(w) p_{2}(z) \\ p_{2}(w + z) &= p_{0}(w) p_{2}(z) + p_{1}(w) p_{1}(z) + p_{2}(w) p_{0}(z) \end{align*}

These are analogous to the trigonometric/hyperbolic identities. The simplest way to derive these is to work with the matrix-valued function

\begin{align*} \exp{(z A)} &= I p_{0}(z) + A p_{1}(z) + A^{2} p_{2}(z), & A^{3} &= I \end{align*}

and use the property

\begin{equation*} \exp{(w A)} \exp{(z A)} = \exp{(w A + z A)} \end{equation*}

Unlike the trigonometric functions, the \(p\)-functions are not periodic.