M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Two-Dimensional Four-Point Kinematics (3)


You have two slow momenta (\(P_{2}\) and \(P_{4}\)) and two null momenta (\(P_{1}\) and \(P_{3}\)).

Energy-Momentum Vectors

The four external momenta can be written as

$$ P_{1} = \begin{pmatrix} k_{1} & k_{1} \end{pmatrix}; $$
$$ P_{2} = \begin{pmatrix} m_{2} \cosh{(\xi_{2})} & m_{2} \sinh{(\xi_{2})} \end{pmatrix}; $$
$$ P_{3} = \begin{pmatrix} k_{3} & k_{3} \end{pmatrix}; $$
$$ P_{4} = \begin{pmatrix} m_{4} \cosh{(\xi_{4})} & m_{4} \sinh{(\xi_{4})} \end{pmatrix}. $$

Here \(k_{1} > 0\), \(m_{2} > 0\), \(k_{3} > 0\), and \(m_{4} > 0\).

Conservation

The conservation of energy leads to

$$ k_{1} + m_{2} \cosh{(\xi_{2})} = k_{3} + m_{4} \cosh{(\xi_{4})}. $$

Similarly, the conservation of momentum leads to

$$ k_{1} + m_{2} \sinh{(\xi_{2})} = k_{3} + m_{4} \sinh{(\xi_{4})}. $$

These two expressions can be combined to yield two equivalent expressions:

$$ 2k_{1} + m_{2} \exp{(\xi_{2})} = 2k_{3} + m_{4} \exp{(\xi_{4})}; $$
$$ \frac{m_{2}}{\exp{(\xi_{2})}} = \frac{m_{4}}{\exp{(\xi_{4})}}. $$

The second expression leads to

$$ \xi_{4} = \xi_{2} + \log{\left( \frac{m_{4}}{m_{2}} \right)}. $$

Solving for \(k_{3}\) gives

$$ k_{3} = k_{1} + \frac{m_{2}}{2} \exp{(\xi_{2})} - \frac{m_{4}}{2} \exp{(\xi_{4})} = k_{1} + \left( \frac{m_{2}^{2} - m_{4}^{2}}{2 m_{2}} \right) \exp{(\xi_{2})}. $$

2-Mandelstam Invariants

You can introduce three 2-Mandelstam invariants:

$$ s = -(P_{1} + P_{2})^{2} = -(P_{3} + P_{4})^{2}; $$
$$ t = -(P_{1} - P_{3})^{2} = -(P_{2} - P_{4})^{2}; $$
$$ u = -(P_{1} - P_{4})^{2} = -(P_{2} - P_{3})^{2}. $$

Due to the conservation laws, you have

$$ s + t + u = m_{2}^{2} + m_{4}^{2}. $$

Regge-Mandelstam Invariants

You can introduce six Regge-Mandelstam invariants:

$$ r_{12} \equiv -\frac{P_{1} \cdot P_{2}}{k_{1} m_{2}} = \frac{s - m_{2}^{2}}{2 k_{1} m_{2}} = \exp{(-\xi_{2})}; $$
$$ r_{34} \equiv -\frac{P_{3} \cdot P_{4}}{k_{3} m_{4}} = \frac{s - m_{4}^{2}}{2 k_{3} m_{4}} = \exp{(-\xi_{4})}; $$
$$ r_{13} \equiv -\frac{P_{1} \cdot P_{3}}{k_{1} k_{3}} = 0; $$
$$ r_{24} \equiv -\frac{P_{2} \cdot P_{4}}{m_{2} m_{4}} = \frac{m_{2}^{2} + m_{4}^{2}}{2 m_{2} m_{4}} = \cosh{(\xi_{2} - \xi_{4})}; $$
$$ r_{14} \equiv -\frac{P_{1} \cdot P_{4}}{k_{1} m_{4}} = \frac{m_{4}^{2} - u}{2 k_{1} m_{4}} = \exp{(-\xi_{4})}; $$
$$ r_{23} \equiv -\frac{P_{2} \cdot P_{3}}{m_{2} k_{3}} = \frac{m_{2}^{2} - u}{2 m_{2} k_{3}} = \exp{(-\xi_{2})}. $$

Since the hyperbolic cosine satisfies

$$ \cosh{(x)} \geq 1; $$

you have the condition:

$$ m_{2}^{2} + m_{4}^{2} \geq 2 m_{2} m_{4}. $$

Indeed, \(r_{13} = 0\) implies that \(t = 0\) and that the vector \(P_{t} = P_{1} - P_{3} = P_{4} - P_{2}\) is null. Since \(t = 0\), you also have

$$ s + u = m_{2}^{2} + m_{4}^{2}. $$

Since the exponential function is always positive, you also have

$$ r_{12} = r_{23} \geq 0, \qquad r_{14} = r_{34} \geq 0. $$

The equality constraint implies that

$$ \frac{s - m_{2}^{2}}{m_{2}^{2} - u} = \frac{k_{1}}{k_{3}} = \frac{m_{4}^{2} - u}{s - m_{4}^{2}}. $$

In terms of \(s\) only, you find that

$$ \frac{k_{1}}{k_{3}} = \frac{s - m_{2}^{2}}{s - m_{4}^{2}}. $$

You can use this to solve for \(k_{3}\):

$$ k_{3} = \left( \frac{s - m_{4}^{2}}{s - m_{2}^{2}} \right) k_{1}. $$

Combining this with the previous result gives \(k_{1}\) in terms of \(\xi_{2}\):

$$ k_{1} = \left( \frac{s - m_{2}^{2}}{2 m_{2}} \right) \exp{(\xi_{2})}; $$

and thus

$$ k_{3} = \left( \frac{s - m_{4}^{2}}{2 m_{2}} \right) \exp{(\xi_{2})} = \left( \frac{s - m_{4}^{2}}{2 m_{4}} \right) \exp{(\xi_{4})}. $$

The positivity constraint gives

$$ \frac{s - m_{2}^{2}}{2 k_{1} m_{2}} \geq 0 \quad \Longrightarrow \quad s \geq m_{2}^{2}. $$

Similarly, you also need \(s \geq m_{4}^{2}\). Both of these conditions mean that the vector \(P_{s} = P_{1} + P_{2} = P_{3} + P_{4}\) is slow and can be written as

$$ P_{s} = \begin{pmatrix} \sqrt{s} \cosh{(\xi_{s})} & \sqrt{s}\sinh{(\xi_{s})} \end{pmatrix}. $$

The composite slow rapidity \(\xi_{s}\) is given by

$$ \xi_{s} = \xi_{2} + \log{\left( \frac{\sqrt{s}}{m_{2}} \right)}. $$

Note that

$$ s - m_{2}^{2} = m_{4}^{2} - u \geq 0, \qquad s - m_{4}^{2} = m_{2}^{2} - u \geq 0. $$

This means that the vector \(P_{u} = P_{1} - P_{4} = P_{3} - P_{2}\) does not have a fixed rapidity and there are three regimes.