M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

More on Bell Transforms


The standard 1-qubit information ortho-normal basis is

\begin{align*} |b_{0} \rangle &= | 0 \rangle & |b_{1} \rangle &= | 1 \rangle \end{align*}

The standard Bell ortho-normal basis is

\begin{align*} |B_{20} \rangle &= \frac{| 0 \rangle + | 1 \rangle}{\sqrt{2}} & |B_{21} \rangle &= \frac{| 0 \rangle - | 1 \rangle}{\sqrt{2}} \end{align*}

There are two ways to map the information basis to the Bell basis. The usual way involves the Hadamard transform:

\begin{equation*} H_{2} = |B_{20} \rangle \langle 0 | + |B_{21} \rangle \langle 1 | = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{equation*}

That is

\begin{align*} H_{2} |0 \rangle &= |B_{20} \rangle & H_{2} |1 \rangle &= |B_{21} \rangle \end{align*}

Note that

\begin{equation*} (H_{2})^{2} = I_{2} \end{equation*}

The other way is

\begin{equation*} J_{2} = |B_{21} \rangle \langle 0 | + |B_{20} \rangle \langle 1 | = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \end{equation*}

That is

\begin{align*} J_{2} |0 \rangle &= |B_{21} \rangle & J_{2} |1 \rangle &= |B_{20} \rangle \end{align*}

Note that

\begin{align*} (J_{2})^{2} &= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} & (J_{2})^{4} &= -I_{2} & (J_{2})^{6} &= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} & (J_{2})^{8} &= I_{2} \end{align*}

Let

\begin{align*} (J_{2})^{0} &= I_{2} & (J_{2})^{1} &= A & (J_{2})^{2} &= B & (J_{2})^{3} &= -A^{\dagger} \\ (J_{2})^{4} &= -I_{2} & (J_{2})^{5} &= -A & (J_{2})^{6} &= -B & (J_{2})^{7} &= A^{\dagger} \end{align*}

That is, the powers of \(J_{2}\) form a representation of \(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\).

Complex 1-Bell Basis

The ortho-normal complex Bell basis is

\begin{align*} |C_{20} \rangle &= \frac{| 0 \rangle + i| 1 \rangle}{\sqrt{2}} & |C_{21} \rangle &= \frac{| 0 \rangle - i| 1 \rangle}{\sqrt{2}} \end{align*}

Again, you have two mappings from the information basis to the complex Bell basis:

\begin{align*} A_{2} &= |C_{20} \rangle \langle 0 | + |C_{21} \rangle \langle 1 | = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} & B_{2} &= |C_{21} \rangle \langle 0 | + |C_{20} \rangle \langle 1 | = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \end{align*}

Note that

\begin{equation*} (A_{2})^{3} = I_{2} \exp\left( \frac{\pi i}{4} \right) \end{equation*}

and also

\begin{equation*} (B_{2})^{3} = I_{2} \exp\left( -\frac{\pi i}{4} \right) \end{equation*}

The powers of each of these matrices form a representation of \(\mathbb{Z}_{3} \times \mathbb{Z}_{8}\).

Real 2-Bell Basis

The standard 2-qubit information ortho-normal basis is

\begin{align*} |b_{0} \rangle &= |00 \rangle & |b_{1} \rangle &= |01 \rangle \\ |b_{2} \rangle &= |10 \rangle & |b_{3} \rangle &= |11 \rangle \end{align*}

The standard 2-Bell ortho-normal basis is

\begin{align*} |B_{40} \rangle &= \frac{1}{\sqrt{2}} \left( |00 \rangle + |11 \rangle \right) & |B_{41} \rangle &= \frac{1}{\sqrt{2}} \left( |00 \rangle - |11 \rangle \right) \\ |B_{42} \rangle &= \frac{1}{\sqrt{2}} \left( |01 \rangle + |10 \rangle \right) & |B_{43} \rangle &= \frac{1}{\sqrt{2}} \left( |01 \rangle - |10 \rangle \right) \end{align*}

There are 24 possible mappings from the information basis to the Bell basis:

\begin{equation*} H_{4}(w x y z) = |B_{4w} \rangle \langle 00 | + |B_{4x} \rangle \langle 01 | + |B_{4y} \rangle \langle 10 | + |B_{4z} \rangle \langle 11 | \end{equation*}

Here \(w x y z\) is one of the permutations of the sequence 0123. These 24 possibilities fall into 5 categories. Two satisfy:

\begin{equation*} \left[ H_{4}(0 2 3 1) \right]^{2} = \left[ H_{4}(2 0 1 3) \right]^{2} = I_{4} \end{equation*}

Four satisfy:

\begin{equation*} \left[ H_{4}(0 1 3 2) \right]^{4} = \left[ H_{4}(2 1 0 3) \right]^{4} = \left[ H_{4}(3 0 1 2) \right]^{4} = \left[ H_{4}(3 2 0 1) \right]^{4} = I_{4} \end{equation*}

Four satisfy:

\begin{equation*} \left[ H_{4}(1 0 3 2) \right]^{12} = \left[ H_{4}(2 1 3 0) \right]^{12} = \left[ H_{4}(2 3 0 1) \right]^{12} = \left[ H_{4}(3 0 2 1) \right]^{12} = I_{4} \end{equation*}

Four satisfy:

\begin{equation*} \left[ H_{4}(0 1 2 3) \right]^{24} = \left[ H_{4}(0 3 1 2) \right]^{24} = \left[ H_{4}(1 2 0 3) \right]^{24} = \left[ H_{4}(3 2 1 0) \right]^{24} = I_{4} \end{equation*}

The rest satisfy

\begin{equation*} \left[ H_{4}(w x y z) \right]^{8} = I_{4} \end{equation*}

Let \(A_{2} \equiv H_{4}(0 2 3 1)\). Then the powers of \(A_{2}\) form a representation of \(\mathbb{Z}_{2}\). Let \(A_{4} \equiv H_{4}(0 1 3 2)\). Then the powers of \(A_{4}\) form a representation of \(\mathbb{Z}_{4}\). Let \(A_{8} \equiv H_{4}(0 2 1 3)\). Then the powers of \(A_{8}\) form a representation of \(\mathbb{Z}_{8}\). Let \(A_{12} \equiv H_{4}(1 0 3 2)\). Then the powers of \(A_{12}\) form a representation of \(\mathbb{Z}_{2} \times \mathbb{Z}_{6}\). Let \(A_{24} \equiv H_{4}(0 1 2 3)\). Then the powers of \(A_{24}\) form a representation of \(\mathbb{Z}_{2} \times \mathbb{Z}_{12}\).

Complex 2-Bell Basis

The complex 2-Bell ortho-normal basis is

\begin{align*} |C_{40} \rangle &= \frac{1}{\sqrt{2}} \left( |00 \rangle + i|11 \rangle \right) & |C_{41} \rangle &= \frac{1}{\sqrt{2}} \left( |00 \rangle - i|11 \rangle \right) \\ |C_{42} \rangle &= \frac{1}{\sqrt{2}} \left( |01 \rangle + i|10 \rangle \right) & |C_{43} \rangle &= \frac{1}{\sqrt{2}} \left( |01 \rangle - i|10 \rangle \right) \end{align*}

There are 24 possible mappings from the information basis to the complex Bell basis:

\begin{equation*} J_{4}(w x y z) = |C_{4w} \rangle \langle 00 | + |C_{4x} \rangle \langle 01 | + |C_{4y} \rangle \langle 10 | + |C_{4z} \rangle \langle 11 | \end{equation*}

Here \(w x y z\) is one of the permutations of the sequence 0123. These 24 possibilities fall into 5 categories. Two satisfy:

\begin{equation*} \left[ J_{4}(2 1 3 0) \right]^{4} = \left[ J_{4}(3 0 2 1) \right]^{4} = I_{4} \end{equation*}

Two satisfy:

\begin{equation*} \left[ J_{4}(0 3 1 2) \right]^{8} = \left[ J_{4}(1 2 0 3) \right]^{8} = I_{4} \end{equation*}

Two satisfy:

\begin{equation*} \left[ J_{4}(2 1 0 3) \right]^{12} = \left[ J_{4}(3 0 1 2) \right]^{12} = I_{4} \end{equation*}

Four satisfy:

\begin{equation*} \left[ J_{4}(0 1 2 3) \right]^{40} = \left[ J_{4}(1 0 3 2) \right]^{40} = \left[ J_{4}(2 3 0 1) \right]^{40} = \left[ J_{4}(3 2 1 0) \right]^{40} = I_{4} \end{equation*}

The rest satisfy

\begin{equation*} \left[ J_{4}(w x y z) \right]^{24} = I_{4} \end{equation*}

Let \(B_{4} \equiv J_{4}(2 1 3 0)\). Then \(B_{4}\) is a representation of \(\mathbb{Z}_{4}\). Let \(B_{8} \equiv J_{4}(0 3 1 2)\). Then \(B_{8}\) is a representation of \(\mathbb{Z}_{8}\). Let \(B_{12} \equiv J_{4}(0 2 1 3)\). Then \(B_{12}\) is a representation of \(\mathbb{Z}_{2} \times \mathbb{Z}_{6}\). Let \(B_{24} \equiv J_{4}(0 1 3 2)\). Then \(B_{24}\) is a representation of \(\mathbb{Z}_{2} \times \mathbb{Z}_{12}\). Let \(B_{40} \equiv J_{4}(0 1 2 3)\). Then \(B_{40}\) is a representation of \(\mathbb{Z}_{5} \times \mathbb{Z}_{8}\).