Processing math: 100%

M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Hamiltonian for Quantum Fourier Transform 2


The quantum Fourier transform is a unitary matrix F that satisfies the following properties:

F2=S,F3=F=FS,F4=S2=I

Here S is a particular (hermitian) permutation matrix. Let

F=exp(iG),G=G

Here G would be the hermitian Hamiltonian for the quantum Fourier transform. We are going to assume that G has a particular form:

G=wI+x(F+F)+iy(FF)+zS

Here w, x, y, and z are real numbers. You can re-write G as

G=wI+uF+vF+zS,ux+iy,vxiy

Note that

[F,S]=0,[F,S]=0,[F,F]=0

Thus,

exp(iG)=exp(iw)exp(iuF)exp(ivF)exp(izS)

Each of these factors can be expanded using trigonometric and quartic functions:

exp(iuF)=Ip0(u)+iFp1(u)Sp2(u)iFp3(u)exp(ivF)=Ip0(v)+iFp1(v)Sp2(v)iFp3(v)exp(izS)=Icos(z)+iSsin(z)

Let

exp(iuF)exp(ivF)exp(izS)=Ia+Fb+Fc+Sd

In order for G to be the hermitian Hamiltonian, we must have

a=0b0c=0d=0

The I coefficient will be

a=cos(z)[p0(u)p0(v)p1(u)p1(v)+p2(u)p2(v)p3(u)p3(v)]isin(z)[p0(u)p2(v)p1(u)p3(v)+p2(u)p0(v)p3(u)p1(v)]

This coefficient must vanish. The F coefficient will be

b=icos(z)[p0(u)p3(v)p1(u)p0(v)+p2(u)p1(v)p3(u)p2(v)]sin(z)[p0(u)p1(v)p1(u)p2(v)+p2(u)p3(v)p3(u)p0(v)]

This coefficient cannot vanish. The F coefficient will be

c=icos(z)[p0(u)p1(v)p1(u)p2(v)+p2(u)p3(v)p3(u)p4(v)]+sin(z)[p0(u)p3(v)p1(u)p0(v)+p2(u)p1(v)p3(u)p2(v)]

This coefficient must vanish. The S coefficient will be

d=cos(z)[p0(u)p2(v)p1(u)p3(v)+p2(u)p0(v)p3(u)p1(v)]+isin(z)[p0(u)p0(v)p1(u)p1(v)+p2(u)p2(v)p3(u)p3(v)]

This coefficient must vanish. These coefficients can be written in a simpler form:

a=α(u,v)cos(z)iβ(u,v)sin(z)b=iγ(u,v)cos(z)δ(u,v)sin(z)c=iδ(u,v)cos(z)+γ(u,v)sin(z)d=β(u,v)cos(z)+iα(u,v)sin(z)

with

α(u,v)p0(u)p0(v)p1(u)p1(v)+p2(u)p2(v)p3(u)p3(v)β(u,v)p0(u)p2(v)p1(u)p3(v)+p2(u)p0(v)p3(u)p1(v)γ(u,v)p0(u)p3(v)p1(u)p0(v)+p2(u)p1(v)p3(u)p2(v)δ(u,v)p0(u)p1(v)p1(u)p2(v)+p2(u)p3(v)p3(u)p0(v)

Actually, these are much simpler:

2α(u,v)=p0(uv)+p2(uv)+p0(u+v)p2(u+v)2β(u,v)=p0(uv)+p2(uv)p0(u+v)+p2(u+v)2γ(u,v)=p3(uv)p1(uv)+p3(u+v)p1(u+v)2δ(u,v)=p3(uv)p1(uv)p3(u+v)+p1(u+v)

Indeed, using the definitions of the p-functions gives

2α(u,v)=cosh(uv)+cos(u+v)=cos(2y)+cos(2x)2β(u,v)=cosh(uv)cos(u+v)=cos(2y)cos(2x)2γ(u,v)=sinh(uv)sin(u+v)=isin(2y)sin(2x)2δ(u,v)=sinh(uv)+sin(u+v)=isin(2y)+sin(2x)

Thus, α and β are real and γ and δ are complex. Since α and β are real, and a and d must vanish, we must have

α=β=0

This can be achieved when

xm=(2m+1)π4yn=(2n+1)π4

Note that

sin(2xm)=(1)msin(2yn)=(1)n

and thus

γmn=(1)m+i(1)n2δmn=(1)mi(1)n2

Hence

bmn=12cos(z)[i(1)m(1)n]+12sin(z)[i(1)n(1)m]cmn=12cos(z)[i(1)m+(1)n]12sin(z)[i(1)n+(1)m]

There are four distinct possibilities:

b00=(i1)[cos(z)+sin(z)2]c00=(i+1)[cos(z)sin(z)2]b01=(i+1)[cos(z)sin(z)2]c01=(i1)[cos(z)+sin(z)2]b10=(1+i)[sin(z)cos(z)2]c10=(1i)[cos(z)+sin(z)2]b11=(1i)[cos(z)+sin(z)2]c11=(1+i)[sin(z)cos(z)2]

Note that c00=0 or c11=0 whenever

zk=(4k+1)π4

Then

b00k=(1)k(1+i2)=exp(3πi4+kπi)b11k=(1)k(1i2)=exp(πi4+kπi)

Note that

b000=b111=exp(3πi4)b001=b110=exp(πi4)

In a similar way, c01=0 or c10=0 whenever

zl=(4l+3)π4

Then

b01l=(1)l(1i2)=exp(3πi4+lπi)b10l=(1)l(1+i2)=exp(πi4+lπi)

Note that

b010=b101=exp(5πi4)b011=b100=exp(πi4)

Thus, there are four possible outcomes for the hermitian Hamiltonian:

G000=3π4I+π4(1+i)F+π4(1i)F+π4SG001=π4I+π4(1+i)F+π4(1i)F3π4SG010=3π4I+π4(1i)F+π4(1+i)F+3π4SG011=π4I+π4(1i)F+π4(1+i)Fπ4S

I have checked that these four hermitian Hamiltonians work for the 3-dimensional and 4-dimensional discrete Fourier transform. Indeed, my result works for any unitary matrix whose quartic power is the identity.