The quantum Fourier transform is a unitary matrix F that satisfies the following properties:
F2=S,F3=F†=FS,F4=S2=I
Here S is a particular (hermitian) permutation matrix. Let
F=exp(iG),G†=G
Here G would be the hermitian Hamiltonian for the quantum Fourier transform. We are going to assume that G has a particular form:
G=wI+x(F+F†)+iy(F−F†)+zS
Here w, x, y, and z are real numbers. You can re-write G as
G=wI+uF+vF†+zS,u≡x+iy,v≡x−iy
Note that
[F,S]=0,[F†,S]=0,[F,F†]=0
Thus,
exp(iG)=exp(iw)exp(iuF)exp(ivF†)exp(izS)
Each of these factors can be expanded using trigonometric and quartic functions:
exp(iuF)=Ip0(u)+iFp1(u)−Sp2(u)−iF†p3(u)exp(ivF†)=Ip0(v)+iF†p1(v)−Sp2(v)−iFp3(v)exp(izS)=Icos(z)+iSsin(z)
Let
exp(iuF)exp(ivF†)exp(izS)=Ia+Fb+F†c+Sd
In order for G to be the hermitian Hamiltonian, we must have
a=0b≠0c=0d=0
The I coefficient will be
a=cos(z)[p0(u)p0(v)−p1(u)p1(v)+p2(u)p2(v)−p3(u)p3(v)]−isin(z)[p0(u)p2(v)−p1(u)p3(v)+p2(u)p0(v)−p3(u)p1(v)]
This coefficient must vanish. The F coefficient will be
b=−icos(z)[p0(u)p3(v)−p1(u)p0(v)+p2(u)p1(v)−p3(u)p2(v)]−sin(z)[p0(u)p1(v)−p1(u)p2(v)+p2(u)p3(v)−p3(u)p0(v)]
This coefficient cannot vanish. The F† coefficient will be
c=icos(z)[p0(u)p1(v)−p1(u)p2(v)+p2(u)p3(v)−p3(u)p4(v)]+sin(z)[p0(u)p3(v)−p1(u)p0(v)+p2(u)p1(v)−p3(u)p2(v)]
This coefficient must vanish. The S coefficient will be
d=−cos(z)[p0(u)p2(v)−p1(u)p3(v)+p2(u)p0(v)−p3(u)p1(v)]+isin(z)[p0(u)p0(v)−p1(u)p1(v)+p2(u)p2(v)−p3(u)p3(v)]
This coefficient must vanish. These coefficients can be written in a simpler form:
a=α(u,v)cos(z)−iβ(u,v)sin(z)b=−iγ(u,v)cos(z)−δ(u,v)sin(z)c=iδ(u,v)cos(z)+γ(u,v)sin(z)d=−β(u,v)cos(z)+iα(u,v)sin(z)
with
α(u,v)≡p0(u)p0(v)−p1(u)p1(v)+p2(u)p2(v)−p3(u)p3(v)β(u,v)≡p0(u)p2(v)−p1(u)p3(v)+p2(u)p0(v)−p3(u)p1(v)γ(u,v)≡p0(u)p3(v)−p1(u)p0(v)+p2(u)p1(v)−p3(u)p2(v)δ(u,v)≡p0(u)p1(v)−p1(u)p2(v)+p2(u)p3(v)−p3(u)p0(v)
Actually, these are much simpler:
2α(u,v)=p0(u−v)+p2(u−v)+p0(u+v)−p2(u+v)2β(u,v)=p0(u−v)+p2(u−v)−p0(u+v)+p2(u+v)2γ(u,v)=−p3(u−v)−p1(u−v)+p3(u+v)−p1(u+v)2δ(u,v)=−p3(u−v)−p1(u−v)−p3(u+v)+p1(u+v)
Indeed, using the definitions of the p-functions gives
2α(u,v)=cosh(u−v)+cos(u+v)=cos(2y)+cos(2x)2β(u,v)=cosh(u−v)−cos(u+v)=cos(2y)−cos(2x)2γ(u,v)=−sinh(u−v)−sin(u+v)=−isin(2y)−sin(2x)2δ(u,v)=−sinh(u−v)+sin(u+v)=−isin(2y)+sin(2x)
Thus, α and β are real and γ and δ are complex. Since α and β are real, and a and d must vanish, we must have
α=β=0
This can be achieved when
xm=(2m+1)π4yn=(2n+1)π4
Note that
sin(2xm)=(−1)msin(2yn)=(−1)n
and thus
γmn=−(−1)m+i(−1)n2δmn=(−1)m−i(−1)n2
Hence
bmn=12cos(z)[i(−1)m−(−1)n]+12sin(z)[i(−1)n−(−1)m]cmn=12cos(z)[i(−1)m+(−1)n]−12sin(z)[i(−1)n+(−1)m]
There are four distinct possibilities:
b00=(i−1)[cos(z)+sin(z)2]c00=(i+1)[cos(z)−sin(z)2]b01=(i+1)[cos(z)−sin(z)2]c01=(i−1)[cos(z)+sin(z)2]b10=(1+i)[sin(z)−cos(z)2]c10=(1−i)[cos(z)+sin(z)2]b11=(1−i)[cos(z)+sin(z)2]c11=(1+i)[sin(z)−cos(z)2]
Note that c00=0 or c11=0 whenever
zk=(4k+1)π4
Then
b00k=(−1)k(−1+i√2)=exp(3πi4+kπi)b11k=(−1)k(1−i√2)=exp(−πi4+kπi)
Note that
b000=b111=exp(3πi4)b001=b110=exp(−πi4)
In a similar way, c01=0 or c10=0 whenever
zl=(4l+3)π4
Then
b01l=(−1)l(−1−i√2)=exp(−3πi4+lπi)b10l=(−1)l(1+i√2)=exp(πi4+lπi)
Note that
b010=b101=exp(5πi4)b011=b100=exp(πi4)
Thus, there are four possible outcomes for the hermitian Hamiltonian:
G000=−3π4I+π4(1+i)F+π4(1−i)F†+π4SG001=π4I+π4(1+i)F+π4(1−i)F†−3π4SG010=3π4I+π4(1−i)F+π4(1+i)F†+3π4SG011=−π4I+π4(1−i)F+π4(1+i)F†−π4S
I have checked that these four hermitian Hamiltonians work for the 3-dimensional and 4-dimensional discrete Fourier transform. Indeed, my result works for any unitary matrix whose quartic power is the identity.