M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Hamiltonian for Quantum Fourier Transform 1


Consider an \(N \times N\) matrix \(A\) that squares to the identity:

\begin{equation*} A^{2} = I_{N} \end{equation*}

Now consider the exponential of such a matrix:

\begin{equation*} \exp{\left( \frac{i}{2} \theta A \right)} = \sum_{n = 0}^{\infty} \frac{1}{\Gamma(n+1)} \left( \frac{i}{2} \theta A \right)^{n} \end{equation*}

Using the familiar trick of splitting the infinite sum into even and odd powers gives

\begin{equation*} \exp{\left( \frac{i}{2} \theta A \right)} = I_{N} \cos{\left( \frac{\theta}{2} \right)} + i A \sin{\left( \frac{\theta}{2} \right)} \end{equation*}

Setting \(\theta = \pi (4n + 1)\) with \(n \in \mathbb{Z}\) gives

\begin{equation*} \exp{\left( \frac{i}{2} \pi (4 n + 1) A \right)} = i A \end{equation*}

Writing

\begin{align*} -i I_{N} &= \exp{\left( \frac{i}{2} \pi (4 m - 1) I_{N} \right)}, & m &\in \mathbb{Z} \end{align*}

lets you write \(A\) as an exponential:

\begin{align*} A &= \exp{\left[ i B(m, n) \right]}, & B(m, n) &= \frac{\pi}{2} (4 m - 1) I_{N} + \frac{\pi}{2} (4 n + 1) A \end{align*}

This procedure works for any matrix that squares to the identity, not just Pauli matrices!

Recall that the quantum Fourier transform matrix \(F_{N}\) satisfies the following properties

\begin{align*} (F_{N})^{2} &= S_{N}, & (S_{N})^{2} &= (F_{N})^{4} = I_{N} \end{align*}

Here \(S_{N}\) is a certain permutation matrix

\begin{equation*} S_{N} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ \end{bmatrix} \end{equation*}

If you write the Fourier transform matrix in an exponential form,

\begin{equation*} F_{N} = \exp{(i E_{N})} \end{equation*}

then it follows that

\begin{align*} S_{N} &= \exp{(2 i E_{N})}, & I_{N} &= \exp{(4 i E_{N})} \end{align*}

Since the permutation matrix \(S_{N}\) squares to the identity, it follows that

\begin{align*} S_{N} &= \exp{[i R_{N}(m, n)]}, & R_{N}(m, n) &= \frac{\pi}{2}(4 m - 1) I_{N} + \frac{\pi}{2}(4 n + 1) S_{N} \end{align*}

Thus, the "Hamiltonian" for the quantum Fourier transform is given by

\begin{equation*} E_{N}(m, n) = \frac{\pi}{4}(4 m - 1) I_{N} + \frac{\pi}{4}(4 n + 1) S_{N} \end{equation*}

Let us check this for the first few cases.

For \(N = 3\), you get:

\begin{equation*} E_{3}(m, n) = \frac{\pi}{4}(4 m - 1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{\pi}{4}(4 n + 1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \frac{\pi}{4} \begin{bmatrix} 4(m+n) & 0 & 0 \\ 0 & 4m-1 & 4n+1 \\ 0 & 4n+1 & 4m-1 \end{bmatrix} \end{equation*}

In particular,

\begin{equation*} E_{3}(0, 0) = \frac{\pi}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \end{equation*}

Well, checking with Wolfram Alpha or NumPy/SciPy, this Hamiltonian does not produce the 3-dimensional Fourier transform:

\begin{equation*} \exp{(i E_{3})} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1-i & 1+i \\ 0 & 1+i & 1-i \end{bmatrix} \end{equation*}

Indeed, this is just a square root of \(S_{3}\).

Let us see if this also does not work for even values of \(N\). For \(N = 4\), you get:

\begin{equation*} E_{4}(m, n) = \frac{\pi}{4}(4 m - 1) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \frac{\pi}{4}(4 n + 1) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \end{equation*}

That is,

\begin{equation*} E_{4}(m, n) = \frac{\pi}{4} \begin{bmatrix} 4(m+n) & 0 & 0 & 0 \\ 0 & 4m-1 & 0 & 4n+1 \\ 0 & 0 & 4(m+n) & 0 \\ 0 & 4n+1 & 0 & 4m-1 \end{bmatrix} \end{equation*}

In particular,

\begin{equation*} E_{4}(0, 0) = \frac{\pi}{4} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \end{equation*}

Again, checking with Wolfram Alpha or NumPy/SciPy, this Hamiltonian does not produce the 4-dimensional Fourier transform:

\begin{equation*} \exp{(i E_{4})} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1-i & 0 & 1+i \\ 0 & 0 & 2 & 0 \\ 0 & 1+i & 0 & 1-i \end{bmatrix} \end{equation*}

Indeed, this is just a square root of \(S_{4}\).

I guess you are not going to get the Hamiltonian for the quantum Fourier transform this way.