M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Hamiltonian for Hadamard Transforms


A unitary matrix \(U\) satisfies the following relation

\begin{equation*} U^{\dagger} = U^{-1} \end{equation*}

A hermitian matrix \(V\) satisfies the following relation

\begin{equation*} V^{\dagger} = V \end{equation*}

The simplest case involves 2×2 matrices. The most general 2×2 hermitian matrix is given by

\begin{equation*} V = \frac{1}{2} \begin{bmatrix} w + z & x - yi \\ x + yi & w - z \end{bmatrix} = \frac{w}{2} I_{2} + \frac{x}{2} X + \frac{y}{2} Y + \frac{z}{2} Z \end{equation*}

Recall that

\begin{equation*} [X, I_{2}] = [Y, I_{2}] = [Z, I_{2}] = 0 \end{equation*}

A unitary matrix can be written in exponential form:

\begin{equation*} U = \exp{(iV)} = \exp{\left( \frac{iw}{2} \right)} \exp{\left( \frac{i}{2} \left[x X + y Y + z Z \right] \right)} \end{equation*}

Using the familiar result for exponentiation of Pauli matrices gives

\begin{equation*} U = \exp{\left( \frac{iw}{2} \right)} \left[ I_{2} \cos{\left( \frac{\sqrt{x^{2} + y^{2} + z^{2}}}{2} \right)} + i \left( \frac{x X + y Y + z Z}{\sqrt{x^{2} + y^{2} + z^{2}}} \right) \sin{\left( \frac{\sqrt{x^{2} + y^{2} + z^{2}}}{2} \right)} \right] \end{equation*}

As an example, consider the 2-dimensional Hadamard transform:

\begin{equation*} H_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}}\left( X + Z \right) \end{equation*}

Thus, we need

\begin{align*} w &= -\pi, & y &= 0, & \sqrt{x^{2} + z^{2}} &= \pi \end{align*}

Then

\begin{equation*} U = \frac{xX + zZ}{\pi} \end{equation*}

Finally, choose

\begin{equation*} x = z = \frac{\pi}{\sqrt{2}} \end{equation*}

Thus,

\begin{align*} H_{2} &= \exp{\left(i V \right)}, & V &= -\frac{\pi}{2} I_{2} + \frac{\pi}{2} H_{2} \end{align*}

Recall that \(H_{2}\) is equivalent to the 2-dimensional Fourier transform, so the above result gives you the Hamiltonian of the 2-dimensional Fourier transform. In general, the \(N\)-dimensional discrete Fourier transform \(F_{N}\) satisfies the following relations:

\begin{align*} (F_{N})^{2} &= S_{N}, & (S_{N})^{2} &= (F_{N})^{4} = I_{N} \end{align*}

Let

\begin{equation*} F_{N} = \exp{(i G_{N})} \end{equation*}

Then

\begin{equation*} (F_{N})^{2} = \exp{(2i G_{N})} = S_{N} \end{equation*}

and also

\begin{equation*} (F_{N})^{4} = \exp{(4i G_{N})} = I_{N} \end{equation*}

Note that this does not necessarily implies that \(G_{N} = 0\). Indeed, looking back at our result for 2×2 matrices, setting

\begin{align*} w &= 4 \pi m, & \sqrt{x^{2} + y^{2} + z^{2}} &= 4 \pi n, & m, n &\in \mathbb{Z} \end{align*}

you get

\begin{align*} \exp{(i V(m, n))} &= I_{2}, & V(m, n) &= 2 \pi m I_{2} + 2 \pi n \left(xX + yY + zZ \right), & x^{2} + y^{2} + z^{2} &= 1 \end{align*}

Thus, the exponential of a 2×2 hermitian matrix of the above form will be the 2×2 identity matrix.

For two qubits you can have the 4-dimensional Fourier transform. The Hamiltonian for this matrix would presumably require understanding 4×4 hermitian matrices in more detail. However, since the 4-dimensional Hadamard transform is given by a Kronecker product,

\begin{equation*} H_{4} = H_{2} \otimes H_{2} \end{equation*}

you can find the Hamiltonian for this transform with what we have seen so far. There is an important identity that I will not prove:

\begin{equation*} \exp{(A)} \otimes \exp{(B)} = \exp{(A \oplus B)} \end{equation*}

Here \(\oplus\) is the Kronecker sum. If \(A\) is \(M \times M\) and \(B\) is \(N \times N\), then the Kronecker sum is given by

\begin{equation*} A \oplus B = (A \otimes I_{N}) + (I_{M} \otimes B) \end{equation*}

Thus

\begin{equation*} H_{4} = \exp{(iG_{2})} \otimes \exp{(iG_{2})} = \exp{(i G_{2} \oplus iG_{2})} = \exp{(i G_{4})} \end{equation*}

That is

\begin{align*} G_{4} &= G_{2} \oplus G_{2}, & G_{2} = -\frac{\pi}{2} I_{2} + \frac{\pi}{2} H_{2} = \frac{\pi}{2\sqrt{2}} \begin{bmatrix} 1 - \sqrt{2} & 1 \\ 1 & -1 - \sqrt{2} \end{bmatrix} \end{align*}

More explicitly,

\begin{equation*} G_{4} = \frac{\pi}{2 \sqrt{2}} \begin{bmatrix} 2 - \sqrt{8} & 1 & 1 & 0 \\ 1 & -\sqrt{8} & 0 & 1 \\ 1 & 0 & -\sqrt{8} & 1 \\ 0 & 1 & 1 & -2 - \sqrt{8} \end{bmatrix} = -\pi I_{4} + \frac{\pi}{2} \left( H_{2} \oplus H_{2} \right) \end{equation*}

This is the Hamiltonian for the 4-dimensional Hadamard transform.