M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Exponential of Idempotent Matrix


An idempotent matrix \(A\) satisfies

\begin{align*} A^{n} &= A, & n &> 0 \end{align*}

Here \(n\) only takes integer values. Consider the following exponential function:

\begin{equation*} U(A, \theta) = \exp{(\theta A)} \end{equation*}

You can write this as an infinite series:

\begin{equation*} U(A, \theta) = I + \sum_{n = 0}^{\infty} \frac{1}{\Gamma(n + 1)} \theta^{n} A^{n} = I + \sum_{n = 0}^{\infty} \frac{1}{\Gamma(n + 1)} \theta^{n} A \end{equation*}

Finally, the second term can be written as an exponential too:

\begin{equation*} U(A, \theta) = I + \left[\exp{(\theta)} - 1 \right] A \end{equation*}

An example of an idempotent matrix is an operator of the form \(|x \rangle \langle x |\).