M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Exponential of a Pauli Matrix


The three Pauli matrices are

\begin{align*} X &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, & Y &= \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, & Z &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \end{align*}

Each is hermitian and square to the identity:

\begin{equation*} X^{2} = Y^{2} = Z^{2} = I_{2} \end{equation*}

Consider the following function:

\begin{align*} U_{M}(\theta) &\equiv \exp{\left( \frac{i}{2} \theta M \right)}, & M^{2} &= I_{2} \end{align*}

The exponential of a matrix is defined in terms of the infinite series

\begin{equation*} U_{M}(\theta) = \sum_{n = 0}^{\infty} \frac{1}{\Gamma(n+1)} \left( \frac{i}{2} \theta M \right)^{n} \end{equation*}

First, you split the sum into even and odd powers:

\begin{equation*} U_{M}(\theta) = \sum_{n = 0}^{\infty} \frac{1}{\Gamma(2n+1)} \left( \frac{i}{2} \theta M \right)^{2n} + \sum_{n = 0}^{\infty} \frac{1}{\Gamma(2n+2)} \left( \frac{i}{2} \theta M \right)^{2n + 1} \end{equation*}

Then you use the fact that

\begin{align*} i^{2n} &= (-1)^{n}, & M^{2n} &= I_{2} \end{align*}

to find

\begin{equation*} U_{M}(\theta) = I_{2} \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(2n+1)} \left( \frac{1}{2} \theta \right)^{2n} + i M \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{\Gamma(2n+2)} \left( \frac{1}{2} \theta \right)^{2n + 1} \end{equation*}

Finally, you recognize the sine and cosine infinite series:

\begin{equation*} U_{M}(\theta) = I_{2} \cos{\left( \frac{\theta}{2} \right)} + i M \sin{\left( \frac{\theta}{2} \right)} \end{equation*}

Here \(M\) can be any of the three Pauli matrices.

Recall also that the three Pauli matrices anti-commute:

\begin{equation*} XY + YX = YZ + ZY = ZX + XZ = 0 \end{equation*}

Now consider the following matrix

\begin{align*} \hat{r} \cdot R &\equiv x X + y Y + z Z, & x^{2} + y^{2} + z^{2} &= 1 \end{align*}

Then it follows that

\begin{equation*} (\hat{r} \cdot R)^{2} = I_{2} \end{equation*}

Thus, in general

\begin{equation*} \exp{\left[ \frac{i}{2} \theta (\hat{r} \cdot R) \right]} = I_{2} \cos{\left( \frac{\theta}{2} \right)} + i (\hat{r} \cdot R) \sin{\left( \frac{\theta}{2} \right)} \end{equation*}

If you relax the unit 2-sphere condition, then

\begin{align*} r \cdot R &= x X + y Y + z Z, & x^{2} + y^{2} + z^{2} &\neq 1 \end{align*}

and thus

\begin{equation*} (r \cdot R)^{2} = \left(\sqrt{x^{2} + y^{2} + z^{2}}\right)^{2} I_{2} \end{equation*}

The net effect is to scale the angle parameter:

\begin{align*} \exp{\left[ \frac{i}{2} \theta (r \cdot R) \right]} &= \exp{\left[ \frac{i}{2} \tilde{\theta} (\hat{r} \cdot R) \right]}, & \tilde{\theta} &= \theta \sqrt{x^{2} + y^{2} + z^{2}} \end{align*}

Thus:

\begin{equation*} \exp{\left[ \frac{i}{2} \theta (r \cdot R) \right]} = I_{2} \cos{\left( \frac{\theta \sqrt{x^{2} + y^{2} + z^{2}}}{2} \right)} + i \left( \frac{r \cdot R}{\sqrt{x^{2} + y^{2} + z^{2}}} \right) \sin{\left( \frac{\theta \sqrt{x^{2} + y^{2} + z^{2}}}{2} \right)} \end{equation*}

In any case, the length of the \(r\) vector can always be absorbed into the angle \(\theta\).