M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

CHSH Game 2


Alice and Bob share a 2-qubit state. That is, a ket \(| \psi \rangle\) of the form

$$| \psi \rangle = a_{00} | 00 \rangle + a_{01} | 01 \rangle + a_{10} | 10 \rangle + a_{11} | 11 \rangle. $$

Just like before, Alice and Bob each get a random bit. Alice gets \(a\) and Bob gets \(b\). They each use their bit to make a choice of a basis to make a measurement. The basis is ortho-normal, so for Alice it should have the form

$$ |A_{0}(\alpha) \rangle = \cos{(\alpha)} | 0 \rangle + \sin{(\alpha)} | 1 \rangle, \qquad |A_{1}(\alpha) \rangle = \sin{(\alpha)} | 0 \rangle - \cos{(\alpha)} | 1 \rangle; $$

and similarly for Bob:

$$ |B_{0}(\beta) \rangle = \cos{(\beta)} | 0 \rangle + \sin{(\beta)} | 1 \rangle, \qquad |B_{1}(\beta) \rangle = \sin{(\beta)} | 0 \rangle - \cos{(\beta)} | 1 \rangle. $$

If \(a = 0\), then \(\alpha = \alpha_{0}\); otherwise \(\alpha = \alpha_{1}\). Similarly, \(b = 0\), then \(\beta = \beta_{0}\); otherwise \(\beta = \beta_{1}\).

For future reference, here I record the tensor products:

$$ |A_{0}(\alpha) B_{0}(\beta) \rangle = \cos{(\alpha)} \cos{(\beta)} |00 \rangle + \cos{(\alpha)} \sin{(\beta)} |01 \rangle + \sin{(\alpha)} \cos{(\beta)} |10 \rangle + \sin{(\alpha)} \sin{(\beta)} |11 \rangle $$
$$ |A_{0}(\alpha) B_{1}(\beta) \rangle = \cos{(\alpha)} \sin{(\beta)} |00 \rangle - \cos{(\alpha)} \cos{(\beta)} |01 \rangle + \sin{(\alpha)} \sin{(\beta)} |10 \rangle - \sin{(\alpha)} \cos{(\beta)} |11 \rangle $$
$$ |A_{1}(\alpha) B_{0}(\beta) \rangle = \sin{(\alpha)} \cos{(\beta)} |00 \rangle + \sin{(\alpha)} \sin{(\beta)} |01 \rangle - \cos{(\alpha)} \cos{(\beta)} |10 \rangle - \cos{(\alpha)} \sin{(\beta)} |11 \rangle $$
$$ |A_{1}(\alpha) B_{1}(\beta) \rangle = \sin{(\alpha)} \sin{(\beta)} |00 \rangle - \sin{(\alpha)} \cos{(\beta)} |01 \rangle - \cos{(\alpha)} \sin{(\beta)} |10 \rangle + \cos{(\alpha)} \cos{(\beta)} |11 \rangle $$

There are four possible outcomes for the bits \((a, b)\) that the referee produces:

$$ (0, 0), \qquad (0, 1), \qquad (1, 0), \qquad (1, 1). $$

Recall that the game is won if the following condition is met:

$$ \operatorname{AND}(a, b) = \operatorname{XOR}(x, y). $$

Let me check each of the possible referee outcomes.

If \((a, b) = (0, 0)\), then \(\operatorname{AND}(a, b) = 0\). In order for \(\operatorname{XOR}(x, y) = 0\) you need either \(x = y = 0\), or \(x = y = 1\). Thus, the probability of winning in this case has two contributions:

$$ p_{\text{win}}(0, 0) = \left| \langle A_{0}(\alpha_{0})B_{0}(\beta_{0}) | \psi \rangle \right|^{2} + \left| \langle A_{1}(\alpha_{0})B_{1}(\beta_{0}) | \psi \rangle \right|^{2}. $$

That is, Alice projects along \(|A_{0}(\alpha_{0})\rangle\) if \(x=0\) or along \(|A_{1}(\alpha_{0})\rangle\) if \(x=1\). Similarly, Bob projects along \(|B_{0}(\beta_{0})\rangle\) if \(y=0\) or along \(|B_{1}(\beta_{0})\rangle\) if \(y=1\).

If \((a, b) = (0, 1)\), then \(\operatorname{AND}(a, b) = 0\). In order for \(\operatorname{XOR}(x, y) = 0\) you need either \(x = y = 0\), or \(x = y = 1\). Thus, the probability of winning in this case has two contributions:

$$ p_{\text{win}}(0, 1) = \left| \langle A_{0}(\alpha_{0})B_{0}(\beta_{1}) | \psi \rangle \right|^{2} + \left| \langle A_{1}(\alpha_{0})B_{1}(\beta_{1}) | \psi \rangle \right|^{2}. $$

If \((a, b) = (1, 0)\), then \(\operatorname{AND}(a, b) = 0\). In order for \(\operatorname{XOR}(x, y) = 0\) you need either \(x = y = 0\), or \(x = y = 1\). Thus, the probability of winning in this case has two contributions:

$$ p_{\text{win}}(1, 0) = \left| \langle A_{0}(\alpha_{1})B_{0}(\beta_{0}) | \psi \rangle \right|^{2} + \left| \langle A_{1}(\alpha_{1})B_{1}(\beta_{0}) | \psi \rangle \right|^{2}. $$

If \((a, b) = (1, 1)\), then \(\operatorname{AND}(a, b) = 1\). In order for \(\operatorname{XOR}(x, y) = 1\) you need either \(x = 0\) and \(y = 1\), or \(x = 1\) and \(y = 1\). Thus, the probability of winning in this case has two contributions:

$$ p_{\text{win}}(1, 1) = \left| \langle A_{0}(\alpha_{1})B_{1}(\beta_{1}) | \psi \rangle \right|^{2} + \left| \langle A_{1}(\alpha_{1})B_{0}(\beta_{1}) | \psi \rangle \right|^{2}. $$

The total probability to win is given by adding each of the above terms with an appropriate weight:

$$ p_{\text{win}}(\psi) = \frac{1}{4} \left[ p_{\text{win}}(0, 0) + p_{\text{win}}(0, 1) + p_{\text{win}}(1, 0) + p_{\text{win}}(1, 1) \right]. $$

Bell States

If the quantum state \(| \psi \rangle\) is one of the four Bell states

$$ | \Phi^{+} \rangle = \frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right), \quad | \Phi^{-} \rangle = \frac{1}{\sqrt{2}} \left( |00\rangle - |11\rangle \right), \quad | \Psi^{+} \rangle = \frac{1}{\sqrt{2}} \left( |01\rangle + |10\rangle \right), \quad | \Psi^{-} \rangle = \frac{1}{\sqrt{2}} \left( |01\rangle - |10\rangle \right); $$

then the probabilities above greatly simplify.

First, consider \(| \psi \rangle = | \Phi^{+} \rangle\). Then

$$ p_{\text{win}}(0, 0) = \cos^{2}{(\alpha_{0} - \beta_{0})}, \qquad p_{\text{win}}(0, 1) = \cos^{2}{(\alpha_{0} - \beta_{1})}, $$
$$ p_{\text{win}}(1, 0) = \cos^{2}{(\alpha_{1} - \beta_{0})}, \qquad p_{\text{win}}(1, 1) = \sin^{2}{(\alpha_{1} - \beta_{1})}; $$

and thus the probability of winning the game is

$$ p_{\text{win}}(\Phi^{+}) = \frac{1}{4} \left[ \cos^{2}{(\alpha_{0} - \beta_{0})} + \cos^{2}{(\alpha_{0} - \beta_{1})} + \cos^{2}{(\alpha_{1} - \beta_{0})} + \sin^{2}{(\alpha_{1} - \beta_{1})} \right]. $$

For the particular values

$$ \begin{pmatrix} \alpha_{0} & \alpha_{1} & \beta_{0} & \beta_{1} \end{pmatrix} = \begin{pmatrix} 0 & \dfrac{\pi}{4} & \dfrac{\pi}{8} & -\dfrac{\pi}{8} \end{pmatrix}; $$

then

$$ p_{\text{win}}(\Phi^{+}) = \frac{1}{2} + \frac{1}{\sqrt{8}} \approx 0.853553390593274. $$

Apparently, this is the largest possible value for the probability of winning. Currently, I am unable to prove this.

Next, consider the case \(| \psi \rangle = | \Phi^{-} \rangle\). Then

$$ p_{\text{win}}(0, 0) = \cos^{2}{(\alpha_{0} + \beta_{0})}, \qquad p_{\text{win}}(0, 1) = \cos^{2}{(\alpha_{0} + \beta_{1})}, $$
$$ p_{\text{win}}(1, 0) = \cos^{2}{(\alpha_{1} + \beta_{0})}, \qquad p_{\text{win}}(1, 1) = \sin^{2}{(\alpha_{1} + \beta_{1})}; $$

and thus the probability of winning the game is

$$ p_{\text{win}}(\Phi^{-}) = \frac{1}{4} \left[ \cos^{2}{(\alpha_{0} + \beta_{0})} + \cos^{2}{(\alpha_{0} + \beta_{1})} + \cos^{2}{(\alpha_{1} + \beta_{0})} + \sin^{2}{(\alpha_{1} + \beta_{1})} \right]. $$

You can see that if you take the probability of winning for \(| \psi \rangle = | \Phi^{+} \rangle\) and replace

$$ \beta_{0} \rightarrow -\beta_{0}, \qquad \beta_{1} \rightarrow -\beta_{1}; $$

then you get the same expression for the probability of winning for \(| \psi \rangle = | \Phi^{-} \rangle\). That is, for the particular values

$$ \begin{pmatrix} \alpha_{0} & \alpha_{1} & \beta_{0} & \beta_{1} \end{pmatrix} = \begin{pmatrix} 0 & \dfrac{\pi}{4} & -\dfrac{\pi}{8} & \dfrac{\pi}{8} \end{pmatrix}; $$

the probability of winning for \(| \psi \rangle = | \Phi^{-} \rangle\) is maximized.

Next, consider the case \(| \psi \rangle = | \Psi^{+} \rangle\). Then

$$ p_{\text{win}}(0, 0) = \sin^{2}{(\alpha_{0} + \beta_{0})}, \qquad p_{\text{win}}(0, 1) = \sin^{2}{(\alpha_{0} + \beta_{1})}, $$
$$ p_{\text{win}}(1, 0) = \sin^{2}{(\alpha_{1} + \beta_{0})}, \qquad p_{\text{win}}(1, 1) = \cos^{2}{(\alpha_{1} + \beta_{1})}; $$

and thus the probability of winning the game is

$$ p_{\text{win}}(\Psi^{+}) = \frac{1}{4} \left[ \sin^{2}{(\alpha_{0} + \beta_{0})} + \sin^{2}{(\alpha_{0} + \beta_{1})} + \sin^{2}{(\alpha_{1} + \beta_{0})} + \cos^{2}{(\alpha_{1} + \beta_{1})} \right]. $$

You can see that if you take the probability of winning for \(| \psi \rangle = | \Phi^{-} \rangle\) and replace

$$ \alpha_{0} \rightarrow \alpha_{0} + \frac{\pi}{2}, \qquad \alpha_{1} \rightarrow \alpha_{1} + \frac{\pi}{2}; $$

then you get the same expression for the probability of winning for \(| \psi \rangle = | \Psi^{+} \rangle\). That is, for the particular values

$$ \begin{pmatrix} \alpha_{0} & \alpha_{1} & \beta_{0} & \beta_{1} \end{pmatrix} = \begin{pmatrix} \dfrac{\pi}{2} & \dfrac{3\pi}{4} & -\dfrac{\pi}{8} & \dfrac{\pi}{8} \end{pmatrix}; $$

the probability of winning for \(| \psi \rangle = | \Psi^{+} \rangle\) is maximized.

Next, consider the case \(| \psi \rangle = | \Psi^{-} \rangle\). Then

$$ p_{\text{win}}(0, 0) = \sin^{2}{(\alpha_{0} - \beta_{0})}, \qquad p_{\text{win}}(0, 1) = \sin^{2}{(\alpha_{0} - \beta_{1})}, $$
$$ p_{\text{win}}(1, 0) = \sin^{2}{(\alpha_{1} - \beta_{0})}, \qquad p_{\text{win}}(1, 1) = \cos^{2}{(\alpha_{1} - \beta_{1})}; $$

and thus the probability of winning the game is

$$ p_{\text{win}}(\Psi^{-}) = \frac{1}{4} \left[ \sin^{2}{(\alpha_{0} - \beta_{0})} + \sin^{2}{(\alpha_{0} - \beta_{1})} + \sin^{2}{(\alpha_{1} - \beta_{0})} + \cos^{2}{(\alpha_{1} - \beta_{1})} \right]. $$

You can see that if you take the probability of winning for \(| \psi \rangle = | \Phi^{+} \rangle\) and replace

$$ \alpha_{0} \rightarrow \alpha_{0} + \frac{\pi}{2}, \qquad \alpha_{1} \rightarrow \alpha_{1} + \frac{\pi}{2}; $$

then you get the same expression for the probability of winning for \(| \psi \rangle = | \Psi^{-} \rangle\). That is, for the particular values

$$ \begin{pmatrix} \alpha_{0} & \alpha_{1} & \beta_{0} & \beta_{1} \end{pmatrix} = \begin{pmatrix} \dfrac{\pi}{2} & \dfrac{3\pi}{4} & \dfrac{\pi}{8} & -\dfrac{\pi}{8} \end{pmatrix}; $$

the probability of winning for \(| \psi \rangle = | \Psi^{-} \rangle\) is maximized.

Thus, there is a strategy to win the game with a probability larger than the classical 75%.

Reference

This blog post helped me understand how to relate the bits given by the referee to the choices made by Alice and Bob.