M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Bell States and Tensor Products


The 1-qubit Bell states are given by

\begin{align*} |{+}\rangle &= \frac{1}{\sqrt{2}} \left(|{0}\rangle + |{1}\rangle \right) & |{-}\rangle = \frac{1}{\sqrt{2}} \left(|{0}\rangle - |{1}\rangle \right) \end{align*}

These are ortho-normal eigen-states of \(X\):

\begin{align*} X |{+} \rangle &= +1 |{+} \rangle & X |{-} \rangle &= -1 |{-} \rangle \end{align*}

Taking tensor products gives a 2-qubit ortho-normal basis:

\begin{align*} |{+}{+} \rangle &\equiv |{+} \rangle \otimes |{+} \rangle = \frac{1}{2} \left(|{0}{0} \rangle + |{0}{1} \rangle + |{1}{0} \rangle + |{1}{1} \rangle \right) \\ |{+}{-} \rangle &\equiv |{+} \rangle \otimes |{-} \rangle = \frac{1}{2} \left(|{0}{0} \rangle - |{0}{1} \rangle + |{1}{0} \rangle - |{1}{1} \rangle \right) \\ |{-}{+} \rangle &\equiv |{-} \rangle \otimes |{+} \rangle = \frac{1}{2} \left(|{0}{0} \rangle + |{0}{1} \rangle - |{1}{0} \rangle - |{1}{1} \rangle \right) \\ |{-}{-} \rangle &\equiv |{-} \rangle \otimes |{-} \rangle = \frac{1}{2} \left(|{0}{0} \rangle - |{0}{1} \rangle - |{1}{0} \rangle + |{1}{1} \rangle \right) \end{align*}

Note that, by construction, the four vectors in this 2-qubit basis do not describe 2-body entanglement since they are all tensor products. Linear combinations do, giving the 2-qubit Bell states:

\begin{align*} |\Phi^{+} \rangle &= \frac{1}{\sqrt{2}} \left(|{0}{0}\rangle + |{1}{1}\rangle \right) = \frac{1}{\sqrt{2}} \left(|{+}{+}\rangle + |{-}{-}\rangle \right) \\ |\Phi^{-} \rangle &= \frac{1}{\sqrt{2}} \left(|{0}{0}\rangle - |{1}{1}\rangle \right) = \frac{1}{\sqrt{2}} \left(|{-}{+}\rangle + |{+}{-}\rangle \right) \\ |\Psi^{+} \rangle &= \frac{1}{\sqrt{2}} \left(|{0}{1}\rangle + |{1}{0}\rangle \right) = \frac{1}{\sqrt{2}} \left(|{+}{+}\rangle - |{-}{-}\rangle \right) \\ |\Psi^{-} \rangle &= \frac{1}{\sqrt{2}} \left(|{0}{1}\rangle - |{1}{0}\rangle \right) = \frac{1}{\sqrt{2}} \left(|{-}{+}\rangle - |{+}{-}\rangle \right) \end{align*}

These states cannot be factorized as tensor products.

Another 1-qubit basis is the two eigen-states of \(Y\):

\begin{align*} |{\circ}\rangle &= \frac{1}{\sqrt{2}} \left(|{0}\rangle + i|{1}\rangle\right) & |{\star}\rangle &= \frac{1}{\sqrt{2}} \left(|{0}\rangle - i|{1}\rangle\right) \end{align*}

Taking tensor products gives another 2-qubit ortho-normal basis:

\begin{align*} |{\circ}{\circ} \rangle & \equiv |{\circ} \rangle \otimes |{\circ} \rangle = \frac{1}{2} \left(|{0}{0} \rangle + i|{0}{1} \rangle + i|{1}{0} \rangle - |{1}{1} \rangle \right) \\ |{\circ}{\star} \rangle & \equiv |{\circ} \rangle \otimes |{\star} \rangle = \frac{1}{2} \left(|{0}{0} \rangle - i|{0}{1} \rangle + i|{1}{0} \rangle + |{1}{1} \rangle \right) \\ |{\star}{\circ} \rangle & \equiv |{\star} \rangle \otimes |{\circ} \rangle = \frac{1}{2} \left(|{0}{0} \rangle + i|{0}{1} \rangle - i|{1}{0} \rangle + |{1}{1} \rangle \right) \\ |{\star}{\star} \rangle & \equiv |{\star} \rangle \otimes |{\star} \rangle = \frac{1}{2} \left(|{0}{0} \rangle - i|{0}{1} \rangle - i|{1}{0} \rangle - |{1}{1} \rangle \right) \end{align*}

I kind of like this notation: the star suggests complex conjugation.