M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Ann, Bob, and Eve 2


Ann has two ortho-normal bases at her disposal for encoding cbits into qbits:

\begin{align*} \lvert A_{0} \rangle &= \cos(\theta_{a}) \lvert 0 \rangle - \sin(\theta_{a}) \lvert 1 \rangle & \lvert A_{1} \rangle &= \sin(\theta_{a}) \lvert 0 \rangle + \cos(\theta_{a}) \lvert 1 \rangle \\ \lvert B_{0} \rangle &= \cos(\theta_{b}) \lvert 0 \rangle - \sin(\theta_{b}) \lvert 1 \rangle & \lvert B_{1} \rangle &= \sin(\theta_{b}) \lvert 0 \rangle + \cos(\theta_{b}) \lvert 1 \rangle \end{align*}

Note that for \(\theta_{a} = 0\), the \(A\) basis becomes

\begin{align*} \lvert A_{0} \rangle &= \lvert 0 \rangle & \lvert A_{1} \rangle &= \lvert 1 \rangle \end{align*}

and for \(\theta_{b} = \pi/4\), the \(B\) basis becomes

\begin{align*} \lvert B_{0} \rangle &= \lvert {-} \rangle & \lvert B_{1} \rangle &= \lvert {+} \rangle \end{align*}

Bob uses these two bases for decoding. Eve can use a third ortho-normal basis:

\begin{align*} \lvert C_{0} \rangle &= \cos(\theta_{c}) \lvert 0 \rangle - \sin(\theta_{c}) \lvert 1 \rangle & \lvert C_{1} \rangle &= \sin(\theta_{c}) \lvert 0 \rangle + \cos(\theta_{c}) \lvert 1 \rangle \end{align*}

You can check that

\begin{align*} \lvert A_{0} \rangle \langle A_{0} \rvert &= \begin{bmatrix} \cos^{2}(\theta_{a}) & -\cos(\theta_{a}) \sin(\theta_{a}) \\ -\cos(\theta_{a}) \sin(\theta_{a}) & \sin^{2}(\theta_{a}) \end{bmatrix} \\ \lvert A_{1} \rangle \langle A_{1} \rvert &= \begin{bmatrix} \sin^{2}(\theta_{a}) & \cos(\theta_{a}) \sin(\theta_{a}) \\ \cos(\theta_{a}) \sin(\theta_{a}) & \cos^{2}(\theta_{a}) \end{bmatrix} \end{align*}

Let

\begin{align*} \theta_{ab} &\equiv \theta_{a} - \theta_{b} & \theta_{ac} &\equiv \theta_{a} - \theta_{c} &\theta_{bc} &\equiv \theta_{b} - \theta_{c} \end{align*}

Then, for example:

\begin{align*} \langle C_{0} \vert A_{0} \rangle &= \cos(\theta_{c})\cos(\theta_{a}) + \sin(\theta_{c}) \sin(\theta_{a}) = \cos(\theta_{ac}) \\ \langle C_{0} \vert A_{1} \rangle &= \cos(\theta_{c})\sin(\theta_{a}) - \sin(\theta_{c}) \cos(\theta_{a}) = \sin(\theta_{ac}) \\ \langle C_{1} \vert A_{0} \rangle &= \sin(\theta_{c})\cos(\theta_{a}) - \cos(\theta_{c}) \sin(\theta_{a}) = -\sin(\theta_{ac}) \\ \langle C_{1} \vert A_{1} \rangle &= \sin(\theta_{c})\sin(\theta_{a}) + \cos(\theta_{c}) \cos(\theta_{a}) = \cos(\theta_{ac}) \end{align*}

We are going to consider three scenarios where Ann and Bob share a message and Eve eavesdrops:

  1. Eve does not eavesdrops
  2. Eve eavesdrops with a random choice of basis \(A\) or \(B\)
  3. Eve eavesdrops with basis \(C\)

In this post we will go over scenario 2, where Eve eavesdrops with a random choice of basis \(A\) or \(B\).

Ann flips a fair coin and chooses an encoding basis from \(A\) or \(B\). Bob flips another coin and chooses a decoding basis from \(A\) or \(B\). If they do not make the same basis choice, they discard that event. Eve also flips a coin and chooses an eavesdropping basis from \(A\) or \(B\). Now there are four possible events:

  1. Ann encodes with \(A\), Eve eavesdrops with \(A\), Bob decodes with \(A\)
  2. Ann encodes with \(A\), Eve eavesdrops with \(B\), Bob decodes with \(A\)
  3. Ann encodes with \(B\), Eve eavesdrops with \(A\), Bob decodes with \(B\)
  4. Ann encodes with \(B\), Eve eavesdrops with \(B\), Bob decodes with \(B\)

For events 1 and 4, the probability that Bob successfully decodes the qubit that Ann encoded is 1:

\begin{equation*} p_{4} = p_{1} = 1 \end{equation*}

However, when Eve uses a basis for eavesdropping that is different from the encoding/decoding basis, the probability of success is less than 1.

Consider event 2. Ann prepares the state \(\lvert A_{0} \rangle\). The density matrix is

\begin{equation*} \rho = \lvert A_{0} \rangle \langle A_{0} \rvert \end{equation*}

Then Eve eavesdrops with the \(B\) basis. The probability that Eve gets \(\lvert B_{0} \rangle\) is

\begin{equation*} p(B_{0} \vert \rho) = \langle B_{0} \vert \rho \vert B_{0} \rangle = \langle B_{0} \vert A_{0} \rangle \langle A_{0} \vert B_{0} \rangle = \cos^{2}(\theta_{ab}) \end{equation*}

After the measurement, the density matrix is given by

\begin{equation*} \rho_{0} = \lvert B_{0} \rangle \langle B_{0} \rvert \end{equation*}

The probability that Eve gets \(\lvert B_{1} \rangle\) is

\begin{equation*} p(B_{1} \vert \rho) = \langle B_{1} \vert \rho \vert B_{1} \rangle = \langle B_{1} \vert A_{0} \rangle \langle A_{0} \vert B_{1} \rangle = \sin^{2}(\theta_{ab}) \end{equation*}

Right after the measurement, the density matrix is given by

\begin{equation*} \rho_{1} = \lvert B_{1} \rangle \langle B_{1} \rvert \end{equation*}

Thus, the density matrix that Bob receives is

\begin{equation*} \rho = \cos^{2}(\theta_{ab}) \lvert B_{0} \rangle \langle B_{0} \rvert + \sin^{2}(\theta_{ab}) \lvert B_{1} \rangle \langle B_{1} \rvert \end{equation*}

Bob then decodes with the \(A\) basis. The probability that Bob gets \(\lvert A_{0} \rangle\) is

\begin{equation*} p(A_{0} \vert \rho) = \langle A_{0} \vert \rho \vert A_{0} \rangle = \cos^{4}(\theta_{ab}) + \sin^{4}(\theta_{ab}) \end{equation*}

The probability that Bob gets \(\lvert A_{1} \rangle\) is

\begin{equation*} p(A_{1} \vert \rho) = \langle A_{1} \vert \rho \vert A_{1} \rangle = 2\cos^{2}(\theta_{ab}) \sin^{2}(\theta_{ab}) \end{equation*}

A similar argument holds true for the case of Ann sending \(\lvert A_{1} \rangle\). Thus, the probability of success in event 2 is

\begin{equation*} p_{2} = \cos^{4}(\theta_{ab}) + \sin^{4}(\theta_{ab}) \end{equation*}

A similar argument shows that the probability of success in event 3 is the same:

\begin{equation*} p_{3} = p_{2} = \cos^{4}(\theta_{ab}) + \sin^{4}(\theta_{ab}) \end{equation*}

Thus, the overall probability of success is

\begin{equation*} P = \frac{p_{1} + p_{2} + p_{3} + p_{4}}{4} = \frac{1 + \cos^{4}(\theta_{ab}) + \sin^{4}(\theta_{ab})}{2} \end{equation*}

(Again, we have assumed that there is no noise.)