M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Pi Divided by a Power of Two


Recently, I learned that \(\cos{(\pi/7)}\) and \(\sin{(\pi/7)}\) cannot be written in terms of algebraic numbers. This is pretty shocking.

The half-angle formulas

\begin{align*} \cos^{2}{\left( \frac{x}{2} \right)} &= \frac{1 + \cos{(x)}}{2}, & \sin^{2}{\left( \frac{x}{2} \right)} &= \frac{1 - \cos{(x)}}{2} \end{align*}

can be used to find expressions for fractions of \(\pi\) with powers of two as denominators.

You begin with

\begin{align*} \cos{(\pi)} &= -1, & \sin{(\pi)} &= 0 \end{align*}

Using the half-angle formulas gives

\begin{align*} \cos{\left( \frac{\pi}{2} \right)} &= 0, & \sin{\left( \frac{\pi}{2} \right)} &= 1 \end{align*}

The idea is to repeat this procedure to get other fractions.

Using the half-angle formulas gives

\begin{align*} \cos{\left( \frac{\pi}{4} \right)} &= \frac{\sqrt{2}}{2}, & \sin{\left( \frac{\pi}{4} \right)} &= \frac{\sqrt{2}}{2} \end{align*}

Using the half-angle formulas gives

\begin{align*} \cos{\left( \frac{\pi}{8} \right)} &= \frac{\sqrt{2 + \sqrt{2}}}{2}, & \sin{\left( \frac{\pi}{8} \right)} &= \frac{\sqrt{2 - \sqrt{2}}}{2} \end{align*}

Using the half-angle formulas gives

\begin{align*} \cos{\left( \frac{\pi}{16} \right)} &= \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2}, & \sin{\left( \frac{\pi}{16} \right)} &= \frac{\sqrt{2 - \sqrt{2 + \sqrt{2}}}}{2} \end{align*}

Using the half-angle formulas gives

\begin{align*} \cos{\left( \frac{\pi}{32} \right)} &= \frac{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}{2}, & \sin{\left( \frac{\pi}{32} \right)} &= \frac{\sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}{2} \end{align*}

You can already see the pattern. As the denominator grows, the cosine tends to 1, and the sine tends to 0.

Let \(R_{k}\) be the following unitary matrix

\begin{equation*} R_{k} = \begin{bmatrix} 1 & 0 \\ 0 & \exp{\left( -\dfrac{2 \pi i}{2^{k}} \right)} \end{bmatrix} \end{equation*}

Note that

\begin{equation*} R_{19} = \begin{bmatrix} 1 & 0 \\ 0 & 0.9999999999 - 0.00001198422491i \end{bmatrix} \approx \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{equation*}

So after \(k = 19\), the matrix \(R_{k}\) can be approximated by the identity.