M.E. Irizarry-Gelpí

Physics impostor. Mathematics interloper. Husband. Father.

Hartley Functions


In a previous post I defined two functions that appear in the discrete Hartley transforms. Here, I will re-define them with a different normalization:

\begin{align*} \operatorname{cps}{(x)} &\equiv \frac{\cos{(x)} + \sin{(x)}}{\sqrt{2}}, & \operatorname{cqs}{(x)} &\equiv \frac{\cos{(x)} - \sin{(x)}}{\sqrt{2}} \end{align*}

Let us look at a few identities.

You have the parity/reflection identities:

\begin{align*} \operatorname{cps}{(-x)} &= \operatorname{cqs}{(x)}, & \operatorname{cqs}{(-x)} &= \operatorname{cps}{(x)} \end{align*}

You have argument addition:

\begin{align*} \sqrt{2}\operatorname{cps}{(x + y)} &= \operatorname{cps}{(x)} \operatorname{cps}{(y)} + \operatorname{cps}{(x)} \operatorname{cqs}{(y)} + \operatorname{cqs}{(x)} \operatorname{cps}{(y)} - \operatorname{cqs}{(x)} \operatorname{cqs}{(y)} \\ \sqrt{2}\operatorname{cqs}{(x + y)} &= \operatorname{cqs}{(x)} \operatorname{cqs}{(y)} + \operatorname{cqs}{(x)} \operatorname{cps}{(y)} + \operatorname{cps}{(x)} \operatorname{cqs}{(y)} - \operatorname{cps}{(x)} \operatorname{cps}{(y)} \end{align*}

You have argument subtraction:

\begin{align*} \sqrt{2}\operatorname{cps}{(x - y)} &= \operatorname{cps}{(x)} \operatorname{cps}{(y)} + \operatorname{cps}{(x)} \operatorname{cqs}{(y)} - \operatorname{cqs}{(x)} \operatorname{cps}{(y)} + \operatorname{cqs}{(x)} \operatorname{cqs}{(y)} \\ \sqrt{2}\operatorname{cqs}{(x - y)} &= \operatorname{cqs}{(x)} \operatorname{cqs}{(y)} + \operatorname{cqs}{(x)} \operatorname{cps}{(y)} - \operatorname{cps}{(x)} \operatorname{cqs}{(y)} + \operatorname{cps}{(x)} \operatorname{cps}{(y)} \end{align*}

The product of the two functions has a simple form:

\begin{equation*} 2\operatorname{cps}{(x)}\operatorname{cqs}{(x)} = \cos{(2x)} \end{equation*}

Taking squares gives

\begin{align*} \operatorname{cps}^{2}{(x)} &= \frac{1 + \sin{(2x)}}{2} & \operatorname{cqs}^{2}{(x)} &= \frac{1 - \sin{(2x)}}{2} \end{align*}

Thus,

\begin{align*} \operatorname{cps}^{2}{(x)} + \operatorname{cqs}^{2}{(x)} &= 1, & \operatorname{cps}^{2}{(x)} - \operatorname{cqs}^{2}{(x)} &= \sin{(2x)} \end{align*}

The ratio of the two functions also has a simple form, in terms of the tangent function:

\begin{equation*} \frac{\operatorname{cps}{(x)}}{\operatorname{cqs}{(x)}} = \frac{1 + \tan{(x)}}{1 - \tan{(x)}} \end{equation*}